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Abstract. A very rich phase diagram has recently been found in CeCu2Si2 from high pressure experiments
where, in particular, a transition between an intermediate valence configuration and an integral valent
heavy fermion state has been observed. We show that such a valence transition can be understood in the
framework of the periodic Anderson model. In particular, our results show a breakdown of a mixed-valence
state which is accompanied by a drastic change in the f occupation in agreement with experiment. This
valence transition can possibly be interpreted as a collapse of the large Fermi surface of the heavy fermion
state which incorporates not only the conduction electrons but also the localized f electrons. The theoretical
approach used in this paper is based on the novel projector-based renormalization method (PRM). With
respect to the periodic Anderson model, the method was before only employed in combination with the
basic approximations of the well-known slave-boson mean-field theory. In this paper, the PRM treatment
is performed in a more sophisticated manner where both mixed as well as integral valent solutions have
been obtained. Furthermore, we argue that the presented PRM approach might be a promising starting
point to study the competing interactions in CeCu2Si2 and related compounds.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena

1 Introduction

Since the discovery [1] of a superconducting state formed
by heavy quasi-particles in CeCu2Si2 this and related com-
pounds have attracted a lot of scientific interest. Despite
its long history only recently a whole variety of new phys-
ical phases has been observed which was possible by the
intriguing development of experimental techniques. By
substituting Si by Ge in the parent compound CeCu2Si2
a continuous change from a heavy fermion (HF) super-
conducting phase to an antiferromagentic state was ob-
served [2]. An even more complex phase diagram has been
found in pure CeCu2Si2 by applying high pressure [3,4]:
there two superconducting phases with different pairing
mechanisms have been found besides an antiferromagnetic
and a HF phase. Furthermore, a transition between inter-
mediate and integral valence states has been observed.
(For a recent review on superconductivity in Ce based HF
materials see Ref. [5].)

From the theoretical point of view the periodic Ander-
son model (PAM) is considered to be the basic microscopic
model for the investigation of HF systems [6]. The PAM

a e-mail: huebsch@pks.mpg.de

describes the interaction between localized, strongly cor-
related f and itinerant conduction electrons. In the limit
of infinitely large Coulomb repulsion on f sites the PAM
can be written as

H = H0 + H1, (1)

H0 = εf

∑

i,m

f̂ †
imf̂im +

∑

k,m

εk c†kmckm,

H1 =
1√
N

∑

k,i,m

Vk

(
f̂ †

imckm eikRi + h.c.
)

.

Here, εf and εk, both measured from the chemical poten-
tial, are the excitation energies of localized f and itiner-
ant conduction electrons. As a simplification, often both
types of electrons are assumed to have the same angular
momentum index m with νf values, m = 1...νf . The in-
finitely large local Coulomb repulsion is taken into account
by Hubbard operators

f̂ †
im = f †

im

∏

m̃( �=m)

(1 − f †
im̃fim̃)

which enable either empty or singly occupied f sites.
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Due to the complexity of the PAM, most theoretical
studies only focus on certain aspects of the rich phase dia-
grams of rare earth materials. Slave-boson mean-field (SB)
methods, large-N expansions, and the dynamical mean-
field theory [7] have been applied to discuss the interplay
between RKKY and Kondo interactions. Thereby, a tran-
sition between an antiferromagnetic phase and a param-
agnetic state was discussed. On the other hand, to de-
scribe the valence transition and HF superconductivity in
CeCu2Si2 an extended PAM was studied. This model in-
cludes an additional Coulomb interaction between f and
conduction electrons and was discussed within a slave-
boson fluctuation approximation [4,8].

In this paper we apply a novel projector-based renor-
malization method (PRM) [9] to the PAM with the aim to
address the question whether a valence transition, as ex-
perimentally observed in CeCu2Si2 [3,4], can occur in the
plain model. For that purpose we extend in this paper our
previous work on the PAM [10], which was restricted to
the HF phase. The PRM provides a natural way to discuss
the interplay of competing interactions which naturally
emerge from the renormalization treatment of the PAM.
Therefore, we believe that the PRM represents a suited
approach for a deeper understanding of the rich phase di-
agram of CeCu2Si2 or of related compounds. However, in
this paper we concentrate on the valence transition, never-
theless, we are able to sketch how superconducting phases
and RKKY interactions could also be included in our ap-
proach.

This paper is organized as follows. In the next sec-
tion we briefly describe the novel PRM approach [9] that
is applied to the PAM in Section 3. Here, the Hubbard
operators, introduced to take into account the infinitely
large Coulomb repulsion on f sites, cause the main prob-
lems of any theoretical approach. It will turn out that
the well-known SB theory [11,12] as well as our recent
analytical approach based on the PRM [10] do not suf-
ficiently prevent from unphysical states with doubly oc-
cupied f sites. In contrast, the modified PRM treatment
of Section 3 strictly suppresses doubly occupied f sites
by taking into account electronic correlations by means of
the Hubbard operators. Results are presented in Section 4
where mixed valent as well as integral valent states are
found, and a valence transition is observed. Furthermore,
we compare our results with the solutions of the SB the-
ory and our PRM approach of reference [10]. Finally, we
summarize in Section 5.

2 Methodology

The PRM approach [9] starts from a decomposition of a
given many-particle Hamiltonian, H = H0 + H1, where
the perturbation H1 should not contain any terms that
commute with the unperturbed part H0. Thus, H1 repre-
sents transitions between eigenstates of H0 with different
eigenenergies. In the following, we assume that the eigen-
value problem of H0 is solved,

H0|n(0)〉 = E(0)
n |n(0)〉.

A crucial idea of the PRM is the definition of projection
operators by

PλA =
∑

m,n

|n(0)〉〈m(0)|〈n(0)|A|m(0)〉

× Θ(λ − |E(0)
n − E(0)

m |). (2)

Note that Pλ and Qλ = 1−Pλ are super-operators acting
on ordinary operators A of the unitary space. Pλ projects
on those parts of A which are formed by transition opera-
tors |n(0)〉〈m(0)| with energy differences |E(0)

n − E
(0)
m | less

than a given cutoff λ. (λ is smaller than the cutoff Λ of
the original model.) On the other hand, Qλ projects on
the high-energy transitions of an operator. Note, in par-
ticular, that in equation (2) neither |n(0)〉 nor |m(0)〉 have
to be low-energy eigenstates of H0.

Next, an effective Hamiltonian Hλ is derived from the
original Hamiltonian H by an unitary transformation

Hλ = eXλ H e−Xλ , (3)

where the anti-Hermitian generator of the transformation,
Xλ = −X†

λ, shall be chosen in such a way that only tran-
sition operators (between eigenstates of H0) with transi-
tion energies less than the given cutoff λ contribute to Hλ.
Thus, the condition

QλHλ = 0 (4)

must be fulfilled and will be used below to determine
Xλ. Note that it is straightforward to evaluate equa-
tions (3) and (4) in perturbation theory [9]. However,
using an appropriate ansatz for the generator Xλ, the
effective Hamiltonian Hλ can also be calculated in non-
perturbative manner.

A renormalization scheme can be derived if the elimi-
nation procedure for the interaction H1 is not performed
in one step but rather a sequence of unitary transforma-
tions of the form

H(λ−∆λ) = eXλ,∆λ Hλ e−Xλ,∆λ (5)

is applied to the original Hamiltonian H. Thus, transi-
tions between eigenstates of H0 caused by the interaction
H1 are eliminated in steps where the respective transition
energies are used as renormalization parameter λ. Fur-
thermore,

Q(λ−∆λ)H(λ−∆λ) = 0 (6)

is used to specify the generator Xλ,∆λ of the unitary
transformation. Note that equations (5) and (6) describe
a renormalization step that decreases the cutoff of the
Hamiltonian from λ to (λ − ∆λ), as one can see from a
comparison with equations (3) and (4). Therefore, differ-
ence equations for the λ dependence of the Hamiltonian
can be derived from (5) and (6), and we call the resulting
equations for the parameters of the Hamiltonian renormal-
ization equations. Note, that the solutions of these renor-
malization equations strongly depend on the parameters
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of the original Hamiltonian H, and that the limit λ → 0
provides the desired effective Hamiltonian without any in-
teractions.

The stepwise elimination procedure for the interac-
tion H1 as described above resembles Wegner’s flow equa-
tion method [13] and the similarity renormalization [14]
in some aspects. However, there are also substantial
differences between these methods: both flow equation
method [13] and similarity renormalization [14] start from
continuous unitary transformations in differential form. In
contrast, the PRM is based on a sequence of discrete trans-
formations. Therefore, as shown in reference [9], there is
a direct connection between the PRM and usual pertur-
bation theory.

3 Renormalization of the PAM

In the following, we want to apply the framework of the
PRM as discussed above to the PAM. It is well known that
much of the physics of the PAM (1) can be understood
in terms of an uncorrelated model, that is for vanishing
Coulomb repulsion on f sites where the Hubbard operators
f̂ †

im are replaced by usual fermionic operators f †
im. This

model can be solved exactly. However, the parameters
have to be renormalized appropriately. Various theoret-
ical methods have been developed to generate renormal-
ized Hamiltonians. Most popular is the one derived from
slave-boson mean-field (SB) theory [11,12]. Note however
that only HF type solutions can be obtained in this way.
In particular, the SB solution breaks down if the original
f level is located too far below the Fermi level [15] or,
equivalently, if the hybridization strength between f and
conduction electrons becomes too weak.

In the Hamiltonian (1) the Hubbard operators f̂ †
im take

care of the infinitely large local Coulomb repulsion on f
sites so that multiple occupied f sites are strictly forbid-
den. Consequently, any effective model has to satisfy this
requirement as well. However, SB mean-field theory as
well as our recent PRM treatment of the PAM [10] map
the Hamiltonian of equation (1) onto an effectively free
system consisting of two non-interacting fermionic quasi-
particles,

Heff =
∑

k,m

ωc
k c†kmckm +

∑

k,m

ωf
k f †

kmfkm + Eshift, (7)

with renormalized parameters ωc
k, ωf

k, Eshift. It is impor-
tant to notice that due to construction the effective Hamil-
tonian Heff of equation (7) does not prevent from multiple
occupation of f sites. This follows from the occurrence of
the fermionic operators fkm and f †

km in equation (7) in-
stead of the Hubbard operators f̂km and f̂ †

km. However, an
approximation that involves a replacement of the Hubbard
operators f̂km and f̂ †

km by usual fermionic operators fkm

and f †
km might lead to useful results as long as only very

few f type states are below the Fermi level. Thus, only HF-
like solutions with a renormalized f level above the Fermi
level can be obtained based on effective Hamiltonians of

type (7), and SB mean-field theory as well as our recent
PRM treatment of the PAM [10] can not describe integral
valent states.

3.1 Renormalization ansatz

In this paper we want to describe the transition of the
PAM between mixed valent and integral valent states.
Thus, a theoretical treatment is needed that reliably pre-
vents from unphysical multiple occupation of f sites. For
that purpose, we again apply the framework of the PRM
to the PAM, but, in contrast to our recent work [10], we
now keep the Hubbard operators during the whole renor-
malization procedure. Thus, the renormalization ansatz
reads

Hλ = H0,λ + H1,λ (8)

H0,λ = µf,λ

∑

k,m

f̂ †
kmf̂km +

∑

k,m

∆k,λ

(
f̂ †
kmf̂km

)

NL

+
∑

k,m

εk,λ c†kmckm + Eλ

H1,λ = PλH1 =
∑

k,m

Vk Pλ

(
f̂ †
kmckm + h.c.

)

after all excitations with energies larger than the cut-off λ
have been eliminated. Due to the renormalization process
all parameters depend on λ, and an additional energy shift
Eλ and a hopping between different f sites,

(
f̂ †
kmf̂km

)

NL
=

1
N

∑

i,j( �=i)

f̂ †
imf̂jmeik(Ri−Rj),

have been generated. Here, we have introduced Fourier
transformed f operators,

f̂ †
km =

1√
N

∑

i

f̂ †
imeik·Ri .

The initial parameter values of the original model (at cut-
off λ = Λ) are

µf,Λ = εf , ∆k,Λ = 0, εk,Λ = εk, EΛ = 0. (9)

To perform the PRM scheme we also need the commutator
of the unperturbed Hamiltonian with the hybridization.
For convenience, we introduce the unperturbed Liouville
operator L0,λ which is defined by L0,λA = [H0,λ,A] for
any operator variable A, and to simplify the calculations,
the one-particle operators f̂ †

km and c†km are considered as
approximate eigenoperators of L0,λ,

L0,λ f̂ †
kmckm ≈ (εf,λ + D∆k,λ − εk,λ) f̂ †

kmckm. (10)

Here, we introduced the local f energy,

εf,λ = µf,λ − D∆̄λ, (11)
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and defined D = 1−〈n̂f
i 〉+〈n̂f

i 〉/νf and ∆̄λ = 1
N

∑
k ∆k,λ.

The factors D in equations (9) and (10) are caused by the
Hubbard operators in the renormalization ansatz (8). Sim-
ilar expressions without factors D have also been found in
reference [10] where a renormalization ansatz consisting of
fermionic quasi-particles has been used.

As one can see from equation (10), the operator prod-
uct f̂ †

kmckm can also be interpreted as an approximate
eigenoperator of the Liouville operator L0,λ. The corre-
sponding eigenvalues are excitation energies and can be
used to rewrite H1,λ,

H1,λ =
∑

k,m

Θk,λ Vk

(
f̂ †
kmckm + h.c.

)
,

where the Θ functions

Θk,λ = Θ (λ − |εf,λ + D∆k,λ − εk,λ|)

restrict the particle-hole excitations to transition energies
smaller than λ.

3.2 Renormalization equations

Next we want to follow the discussion of reference [10]
to derive renormalization equations for the parameters of
the renormalized Hamiltonian Hλ. It turns out that the
actual calculations are only slightly modified by the new
renormalization ansatz (8) which now includes correlated
Hubbard operators.

To evaluate the new Hamiltonian H(λ−∆λ) according
to equation (5), an unitary transformation has to be per-
formed to eliminate excitations within the energy shell
between (λ − ∆λ) and λ. As in reference [10], we use the
following operator ansatz for the generator Xλ,∆λ of the
unitary transformation,

Xλ,∆λ =
∑

k,m

Θk(λ, ∆λ)Ak(λ, ∆λ) (f̂ †
kmckm − c†kmf̂km)

where the Θk(λ, ∆λ) are products of two Θ functions,

Θk(λ, ∆λ) = Θk,λ

[
1 − Θk,(λ−∆λ)

]
.

Note that the Θk(λ, ∆λ) confine the excitations which
have to be eliminated by the renormalization step from
λ to (λ − ∆λ). The unknown parameters Ak(λ, ∆λ) have
to be fixed in such a way so that only transition with en-
ergies smaller than the new cut-off (λ−∆λ) contribute to
H(λ−∆λ).

As described in reference [10], equations for the param-
eters Ak(λ, ∆λ) of the generator of the unitary transfor-
mation as well as for the parameters of the renormalized
Hamiltonian Hλ can be found by comparing the coeffi-
cients of the operators in the renormalization ansatz (8)
at cutoff (λ−∆λ) and in the explicitly evaluated unitary
transformation (5).

Thus, we obtain the following equations:

Ak(λ, ∆λ) =

Θk(λ, ∆λ)
2
√

D
arctan

[
2
√

DVk

µf,λ + D
(
∆k,λ − ∆̄λ

) − εk,λ

]
(12)

εk,(λ−∆λ) − εk,λ =

− 1
2

[
µf,λ + D

(
∆k,λ − ∆̄λ

) − εk,λ

]

×
{
cos

[
2
√

DAk(λ, ∆λ)
]
− 1

}

−
√

DVk sin
[
2
√

DAk(λ, ∆λ)
]
, (13)

∆k,(λ−∆λ) − ∆k,λ = − 1
D

[
εk,(λ−∆λ) − εk,λ

]
(14)

µf,(λ−∆λ) − µf,λ =

− 1
D

1
N

∑

k

[
εk,(λ−∆λ) − εk,λ

]

×
[
1 + (νf − 1)

〈
c†kmckm

〉]

+
νf − 1
4D3/2

1
N

∑

k

{[
µf,λ + D

(
∆k,λ − ∆̄λ

) − εk,λ

]

× sin
[
2
√

DAk(λ, ∆λ)
]

− 2
√

DVk

{
cos

[
2
√

DAk(λ, ∆λ)
]
− 1

}}

×
〈
f̂ †
kmckm + h.c.

〉

− νf − 1
2D

1
N

∑

k

[
µf,λ − D

(
∆k,λ − ∆̄λ

) − εk,λ

]

×Ak(λ, ∆λ)
〈
f̂ †
kmckm + h.c.

〉
(15)

E(λ−∆λ) − Eλ =

−N〈n̂f
i 〉

[
µf,(λ−∆λ) − µf,λ

]

− 〈n̂f
i 〉

D

∑

k

[
εk,(λ−∆λ) − εk,λ

]
. (16)

Note that besides the factor 1/D in equation (14)
these renormalization equations exactly agree with those
derived in reference [10]. However, the underlying
Hamiltonians differ significantly because now the renor-
malization ansatz (8) contains correlation effects by means
of the Hubbard operators. It will turn out that the Hub-
bard operators not only complicate the further evaluation
of the renormalization equations but also successfully pre-
vent the system from unphysical multiple occupation of
the f sites.

In deriving the renormalization equations (12–16) a
factorization approximation has been employed so that
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the obtained equations still depend on expectation values
which have to be determined simultaneously (see Ref. [10]
for details). Furthermore, an expansion in 1/νf has been
avoided (and spin fluctuations have been neglected) so
that the derived renormalization equations are valid for
large as well as small degeneracies νf . The limit λ → 0
provides the parameters ε̃k, µ̃f , ∆̃k, and Ẽ of the effective
Hamiltonian H̃ = Hλ→0 = H0,λ→0,

H̃ =
∑

k,m

ε̃k c†kmckm + µ̃f

∑

k,m

f̂ †
kmf̂km

+
∑

k,m

∆̃k

(
f̂ †
kmf̂km

)

NL
+ Ẽ , (17)

we are interested in. Here, it is important to notice that
the renormalized Hamiltonian H̃ no longer contains the
hybridization between conduction and localized electrons.
However, H̃ is not a non-interacting fermionic system be-
cause H̃ still takes into account electronic correlations by
means of the Hubbard operators f̂ †

km. Note that these cor-
relations turn out to be crucial for a description of integral
valent states. On the other hand, the Hubbard operators
f̂ †
km also cause challenging difficulties in the further the-

oretical treatment because they do not obey the usual
fermionic anticommutator relations.

The PRM as applied here to the PAM is a non-pertur-
bative method which in most cases generates new inter-
actions in every renormalization step. In order to obtain
a closed set of renormalization equations (which is cru-
cial for further evaluation) one needs to trace back com-
plicated operator objects to simpler ones included in the
renormalization ansatz. In this work, this aim is achieved
by means of a factorization approximation. In order to es-
timate the effect of the neglected fluctuations one would
need to add operator terms to the renormalization ansatz
which are automatically generated during the renormal-
ization procedure. Such an extension of the renormal-
ization scheme might also allow the explanation of for
instance magnetic and superconducting phases which is
beyond the scope of this paper.

3.3 Approximate solutions

In the following we want to develop a strategy to solve the
renormalization equations (12–16) approximately. Here,
similar approximations as in reference [10] shall be used to
decouple the renormalization of the different k values. In
this way, all relevant quantities can be expressed as func-
tions of a renormalized f energy ε̃f which is determined
by numerical minimization of the free energy.

As in reference [10], we use the following approxima-
tions for further evaluation of the renormalization equa-
tions (12–16):

(i) All expectation values (which occur due to the ex-
ploited factorization approximation) are assumed to
be independent from the renormalization parameter λ
and are calculated using the full Hamiltonian H.

(ii) To decouple the renormalization of the different k val-
ues, the λ dependence of the renormalized f level is
neglected, µf,λ −D∆̄λ ≈ ε̃f . The spirit of this approx-
imation is similar to that assumed in the SB theory
where a renormalized f energy is also used from the
very beginning. Note that ε̃f has to be interpreted as
local f energy of the renormalized model (17).

At this point it is important to notice, that our old an-
alytical solution of reference [10] can be easily obtained
if the Hubbard operators in the final Hamiltonian (17)
are replaced by usual fermionic operators. Formally, one
employs

(iii)
∑

k,m f̂ †
kmf̂km ≈ ∑

k,m f †
kmfkm and

(f̂ †
kmf̂km)NL ≈ D (f †

kmfkm)NL

to ensure that, on a mean-field level, the renormalized
Hamiltonian does not generate unphysical states. How-
ever, as already discussed above, the obtained effective
model does not prevent anymore from multiple occupa-
tion of f sites if (iii) has been employed. We have already
argued that such an approximation can only lead to useful
results as long as only very view f type states below the
Fermi level are occupied. Thus, only HF-like solutions can
be observed in this way. To obtain the analytical solution
of reference [10], one also has to employ.

(iv) 1
N

∑
k ∆k,λ ≈ ∆̃ ≈ 0

for further simplification.
In the following we only want to employ approximations
(i) and (ii). In particular, we keep the Hubbard operators
in the final Hamiltonian (17) so that both mixed valent
and integral valent states can be described.

Equations (14) and (16) can be easily integrated be-
tween the lower cutoff λ → 0 and the cutoff of the original
model Λ,

∆̃k = − 1
D

[ε̃k − εk] , (18)

Ẽ = −N〈n̂f
i 〉 [ε̃f − εf ] +

D − 1
D

〈n̂f
i 〉

∑

k

[ε̃k − εk] .

(19)

As already mentioned above, the approximations (i), (ii)
decouple the different k values from each other so that
equation (12) and (13) are completely similar to those ob-
tained for the Fano-Anderson model (compare Ref. [10]).
Thus, two quasi-particle branches are obtained,

ε̃k =
ε̃f + εk

2
− sgn(ε̃f − εk)

2
Wk, (20)

ω̃k := ε̃f + D∆̃k =
ε̃f + εk

2
+

sgn(ε̃f − εk)
2

Wk, (21)

where

Wk =
√

(εk − ε̃f)2 + 4D|Vk|2.

Note that the one-particle energies (20) and (21) still de-
pend on two unknown quantities: the renormalized f level
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ε̃f and the f occupation number 〈n̂f
i 〉 (that determines D

as defined above).
In reference [10] all expectation values as well as the

renormalized f level ε̃f have been determined by func-
tional derivative of the free energy. However, here, this
approach can not easily be applied because the Hubbard
operators contained in the renormalized Hamiltonian (17)
do not fulfill the usual fermionic anti-commutator rela-
tions. Furthermore, the derivation of the free energy would
also lead to problematic δ functions that are caused by the
abrupt change of the statistic of the quasi-particle excita-
tions at ε̃f . (In Ref. [10] these contributions do not appear
because both c-like and f -like excitations are caused by
fermionic quasi-particles.) Therefore, a different approach
has to be developed to determine the renormalized f level
ε̃f and the expectation values.

In the following, the expectation values of the original
Hamiltonian H will be calculated using the renormalized
one-particle operators as derived in reference [10],

c†km(λ → 0) = ũkc†km + ṽkf̂ †
km, (22)

f̂ †
km(λ → 0) = −D ṽkc†km + ũkf̂ †

km, (23)

where we defined

|ũk|2 =
1
2

{
1 − εk − ε̃f

Wk
sgn (ε̃f − εk)

}
, (24)

|ṽk|2 =
1

2D

{
1 +

εk − ε̃f

Wk
sgn (ε̃f − εk)

}
. (25)

Thus, the required expectation values of the full
Hamiltonian H can be traced back to those calculated
with respect to the renormalized Hamiltonian H̃ because
〈A〉 = limλ→0〈A(λ)〉Hλ

holds,

〈
c†kmckm

〉
=

1
2

[
1 − εk − ε̃f

Wk
sgn (ε̃f − εk)

]
f(ε̃k)

+
1
2

[
1 +

εk − ε̃f

Wk
sgn (ε̃f − εk)

]
f̄(ω̃k), (26)

〈
f̂ †
kmckm + h.c.

〉
=

− 2 sgn (ε̃f − εk)
D|Vk|
Wk

[
f(ε̃k) − f̄(ω̃k)

]
. (27)

Here, we introduced the Fermi function

f(ε̃k) := 〈c†kmckm〉H̃ =
1

1 + eβε̃k
,

and defined

f̄(ω̃k) :=
1
D
〈f̂ †

kmf̂km〉H̃. (28)

Note that the factor D in equation (28) has been intro-
duced to underline the similarities of equation (26) and
(27) with the corresponding results of the analytical treat-
ment of reference [10].

In principle, the f occupation number 〈n̂f
i 〉 could also

be calculated using the renormalized one-particle opera-
tors. However, here we alternatively employ the particle
conservation under unitary transformations. Thus, we ob-
tain

〈n̂f
i 〉 =

1
2

νf

N

∑

k

[
1 +

εk − ε̃f

Wk
sgn (ε̃f − εk)

]
f(ε̃k)

+
1
2

νf

N

∑

k

[
2D − 1 − εk − ε̃f

Wk
sgn (ε̃f − εk)

]
f̄(ω̃k).

(29)

For actual calculations one needs to evaluate equation (28)
in order to determine the expectation values of the full
Hamiltonian as given in equations (26, 27), and (29). Be-
cause of the unusual properties of the Hubbard operators,
there is no straightforward way to evaluate equation (28)
and further approximations are necessary. As long as the
renormalized f level is situated above the chemical po-
tential a mean-field treatment of the electronic correla-
tions contained in H might be sufficient, and we would
find f̄(ω̃k) ≈ f(ω̃k) as directly obtained by employing ap-
proximation (iii) mentioned above. On the other hand,
here we are also interested in solutions of the PAM with a
renormalized f level below the Fermi level which require
a theoretical treatment of the electronic correlations in
H beyond a mean-field approximation. Therefore, equa-
tion (28) is evaluated as follows

〈f̂ †
kmf̂km〉H̃ =

1
Tr e−βH̃Tr

(
eβH̃f̂kme−βH̃f̂ †

kme−βH̃
)

≈ f(ω̃k)
〈{

f̂ †
km, f̂km

}

+

〉

H̃

where the approximated f excitation energy as derived in
equation (10) has been used. Thus, (28) can be rewrit-
ten as

f̄(ω̃k) :=
1
Df(ω̃k)

1 + νf−1
N

∑
k′ f(ω̃k′)

. (30)

Unfortunately, approximation (30) does not offer a direct
link to the mean-field result, f̄(ω̃k) ≈ f(ω̃k), for renormal-
ized f energies above the Fermi level. Thus, differences be-
tween the presented treatment and the analytical solution
of reference [10] will appear.

At this point all physical quantities can be calculated
as function of the renormalized f energy ε̃f . Because we
have employed approximation (ii) it is not possible any-
more to use the renormalization equation (15) for µf,λ to
determine ε̃f . Therefore, the local f energy ε̃f is consid-
ered as a free parameter and is determined by minimiza-
tion of the free energy. Because of the unusual anticom-
mutator relations of the Hubbard operators f̂ †

km, the free



A. Hübsch and K.W. Becker: Valence transition in the periodic Anderson model 351

-1.2

-0.8

-0.4

0

ε f

~

-1 -0.8 -0.6 -0.4 -0.2 0
ε

f

0.4

0.6

0.8

1

n f

this work
Ref. 10
SB mean-field

(b)

(a) ν
f
 = 4

Fig. 1. Renormalized f level ε̃f [panel (a)] and averaged f
occupation number nf = 〈n̂f

i 〉 [panel (b)] as function of the
unrenormalized f energy εf where an one-dimensional PAM
(N = 10 000, νf = 4, νfV 2 = 0.36, µ = 0, T = 0.00001) with a
linear dispersion relation for the conduction band in the energy
range between −1 and 1 has been considered. (All energies
are given in units of the half bandwidth.) For comparison, the
results of the PRM approach of reference [10] and of the SB
mean-field theory are drawn with dashed and dotted lines.

energy can not be directly determined. Instead,

dF

dε̃f
=

∑

k,m

dε̃k

dε̃f

〈
c†kmckm

〉

H̃
+

dµ̃f

dε̃f

∑

k,m

〈
f̂ †
kmf̂km

〉

H̃

+
∑

k,m

d∆̃k

dε̃f

〈(
f̂ †
kmf̂km

)

NL

〉

H̃
+

dẼ

dε̃f
(31)

is numerically integrated in order to calculate the free en-
ergy F as function of the renormalized f energy ε̃f . Note
that equation (31) has been obtained from the renormal-
ized Hamiltonian (17). Actual results are discussed in the
next section.

4 Results

It is believed that the one-particle energy εf of the local-
ized f electrons is smoothly changed in CeCu2Si2 due to
pressure [4]. Therefore, we want to discuss the physical
properties of the PAM as a function of εf .

At first let us consider an one-dimensional PAM with a
linear dispersion relation εk for the conduction electrons in
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Fig. 2. Renormalized f level ε̃f [panel (a)] and averaged f
occupation number nf = 〈n̂f

i 〉 [panel (b)] as function of the
unrenormalized f energy εf for an one-dimensional PAM with
νf = 20. Other parameters are chosen as in Figure 1.

the energy range between −1 and 1, and a k independent
hybridization Vk = V . The other parameters are chosen
as follows νfV 2 = 0.36, chemical potential µ = 0, and
T = 0.00001 where all energies are given in units of the
half bandwidth.

As one can see from Figures 1 and 2, we obtain two
different types of solutions depending on the value of the
unrenormalized f level εf . First of all, we obtain the usual
SB type solutions with intermediate valence states nf < 1
where the renormalized energy ε̃f is energetically located
above the Fermi energy. If the unrenormalized energy εf

is lowered the renormalization contributions are no longer
sufficient to push ε̃f above the Fermi level, and the renor-
malized f energy ε̃f is located far below the Fermi energy.
In this case, the averaged f occupation nf is almost ex-
actly 1 and an integral valence state is obtained.

Figures 1 and 2 also reveal the very good agreement
between the HF type solutions of the presented PRM ap-
proach and the analytical results of reference [10]. In this
way it is proven that the Hubbard operators can be re-
placed by usual fermionic operators (compare approxima-
tion (iii) in Sect. 3.3) because in this case only very few
f type states below the Fermi level are occupied as dis-
cussed above. In this regard one needs to keep in mind an
important difference between the SB theory and our PRM
approach: the quasi-particles of the SB theory change their
character as function of k between more f -like and more c-
like behavior. In the PRM excitations do not change their
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character as function of k, and the quasi-particle energies
show jumps in their k dependence if ε̃f is energetically
located within the conduction band. Note, however, that
the various parts of the quasiparticle bands fit perfectly
together, as one can see from equations (20) and (21).

For comparison, the results of the analytical solution
of reference [10] and of the SB theory are shown as well in
Figures 1 and 2. As one can see, no solution with renor-
malized f level ε̃f < 0 could be found for these analytical
approaches because both do not explicitly ensure that f
sites can only be either empty or singly occupied as al-
ready discussed above.

The well-defined transition between the two different
solution types is of particular interest. As expected, for
the HF-like solution the f -charge is always smaller than 1
due to hybridization processes between f and c-electrons.
Simultaneously heavy quasiparticle bands are formed at
the Fermi surface. To describe the HF behavior the full
Anderson model has to be considered. As the bare f -level
moves to smaller energies a transition to an integral va-
lence charge of nf = 1 is observed (similar to the Anderson
impurity model [16]). In this case only the c electrons
should form the Fermi surface. Thus, the observed valence
transition can also be interpreted as a collapse of the large
Fermi surface of the HF state which is formed by conduc-
tion as well as by localized f electrons. Note, however, that
the question whether localized electrons contribute to the
Fermi sea volume or not is still controversially discussed
in the literature [17].

As one can see from Figures 1 and 2, the obtained va-
lence transition is much more pronounced for small degen-
eracies νf , and a smooth transition can be expected in the
limit νf → ∞ of the SB theory. Therefore, a sharp valence
change in generalized SB theories can only be obtained if a
rather large additional Coulomb repulsion between f and
conduction electrons is present in the system [4,8]. How-
ever, here we have shown that such a valence transition
can also be obtained in the plain PAM if corrections for
small degeneracies νf are properly taken into account.

One of the advantages of the analytical PRM is the
opportunity to consider much larger systems than acces-
sible by numerical methods. Therefore, we are also able to
study two- and three-dimensional systems of reasonable
sizes. In this way we can easily show that the observed
valence transition is not an unique phenomenon of the
one-dimensional PAM. The valence transition also occurs
in two- and three-dimensional systems as can been seen in
Figure 3. Therefore, the observed behavior has to be con-
sidered as a general feature of the PAM, and our results
should also be of relevance for actual physical HF systems
like CeCu2Si2 or related compounds.

5 Discussion and summary

The occurrence of a valence transition in the plain PAM
is the main finding of this paper. In contrast, a rather
large additional Coulomb repulsion has been claimed to
be necessary for the valence transition in an extended
PAM [4,8]. The studies of references [4,8] were based on
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Fig. 3. Panel (a) and (b) [(c) and (d)] show the results for
the renormalized f level ε̃f and the f occupation number
nf = 〈n̂f

i 〉 for a two-dimensional [three-dimensional] system
with 100 × 100 [26 × 26× 26] lattice sites. As in Figures 1 and
2, a linear dispersion relation εk = ε(|k|) has been chosen, and
the electronic band covers an energy range between –1.5 and
0.5 [–1.8 and 0.2] where µ = 0, νf = 4, νfV 2 = 0.36, and
T = 0.00001. (Energies are given in units of the half band-
width.) Note that the conduction band has been energetically
shifted in in order to ensure a filling comparable to the one-
dimensional case of Figure 1 because a smaller filling of the
conduction band reduces the change in the f occupation nf at
the transition point.

a slave-boson fluctuation approximation that extends the
well-known slave-boson mean-field theory [11,12] but still
employs the limit of large degeneracy νf → ∞. Our re-
sults show (compare Figures 1 and 2) that the observed
valence transition becomes smooth in this limit. Therefore,
it is reasonable that an additional interaction was found
to be necessary in order to obtain a valence transition in
an approach employing νf → ∞.

Our work also shows the importance of taking care of
a physical f occupation in theoretical approaches. In par-
ticular, it turns out that a completely uncorrelated model
is not able to prevent from unphysical multiple occupa-
tion of f sites, and no integral valence states can be found
in this way. In contrast, the presented PRM approach to
the PAM explicitly suppresses unphysical multiple f occu-
pation which is, in particular, crucial for integral valence
states.

We obtain two solution types: a mixed valence state
with a renormalized f level ε̃f above the Fermi energy and
an integral valence state with ε̃f below the Fermi level.
Furthermore, parameter regimes exist where the transi-
tion between the two solution types is accompanied by a
drastic change in the f occupation. Such a sharp valence
transition occurs in one-dimensional as well as in two- and
three-dimensional systems so that this behavior has to be
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considered as a general feature of the PAM. Note that a
similar valence transition has been experimentally found
in CeCu2Si2 from high pressure experiments [3,4].

In the case of an integral valence state one would
expect that the system can be described by a Kondo
Hamiltonian which is gained from the PAM by the
Schrieffer-Wolff transformation [18] for V/|εf | � 1.
Note, however, that in the present approach spin fluctua-
tions have been neglected altogether but Kondo-like and
RKKY-like interactions as well as higher charge fluctua-
tion terms are automatically generated during the renor-
malization procedure. These contributions will have to be
considered in the future. One might expect that additional
spin and charge fluctuations might possibly give rise to
magnetic and superconducting phases both for the inter-
mediate valence and for the integer valence regime. Also,
one may speculate that the magnitude of the magnetic
moment will be different for these cases due to additional
screening processes.

The PRM approach presented in this paper only ad-
dresses the question for the valence transition in the plain
PAM. However, as mentioned above, the PRM scheme of-
fers great opportunities to include additional interactions
which are automatically generated during the renormal-
ization procedure. Therefore, extensions of the PRM treat-
ment might be promising starting points to study the com-
peting interactions in CeCu2Si2 and related compounds in
more detail.
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